Abstract

The common glycoprotein hormone alpha-subunit (GPH-alpha) contains five intramolecular disulfide bonds, three of which form a cystine knot motif (10-60, 28-82, and 32-84). By converting each pair of cysteine residues of a given disulfide bond to alanine, we have studied the role of individual disulfide bonds in GPH-alpha folding and have related folding ability to secretion and assembly with the human chorionic gonadotropin beta-subunit (hCG-beta). Mutation of non-cystine knot disulfide bond 7-31, bond 59-87, or both (leaving only the cystine knot) resulted in an efficiently secreted folding form that was indistinguishable from wild type. Conversely, the cystine knot mutants were inefficiently secreted (<25%). Furthermore, mutation of the cystine knot disulfide bonds resulted in multiple folding intermediates containing 1, 2, or 4 disulfide bonds. High performance liquid chromatographic separation of intracellular and secreted forms of the folding intermediates demonstrated that the most folded forms were preferentially secreted and combined with hCG-beta. From these studies we conclude that: (i) the cystine knot of GPH-alpha is necessary and sufficient for folding and (ii) there is a direct correlation between the extent of GPH-alpha folding, its ability to be secreted, and its ability to heterodimerize with hCG-beta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.