Abstract

Pig heart NADP-specific isocitrate dehydrogenase is inactivated by N-ethylmaleimide (NEM) (Colman, R. F., and Chu, R. (1970) J. Biol. Chem. 245, 601-607), and is completely protected against inactivation, but not against the incorporation of NEM, by isocitrate plus Mn2+. We have now treated the enzyme with [3H]NEM in the absence and presence of isocitrate plus Mn2+, digested it with trypsin, and isolated and sequenced the labeled Cys peptides. In the inactive enzyme, two major peptides, SSGGFVWACK and DLAGCIHGLSNVK, and two minor peptides, CATITPDEAR and EPIICK, were labeled at Cys. Upon reaction with [3H]NEM in the presence of isocitrate plus Mn2+, full catalytic activity was retained and only DLAGCIHGLSNVK was labeled; the Cys of this peptide is therefore not essential for catalysis. The modification of SSGGFVWACK appears to be the major cause of inactivation by NEM. The Cys in SSGGFVWACK may have a catalytic role, most likely in the strengthened binding of Mn2+ in the presence of isocitrate. Isocitrate dehydrogenase was carboxymethylated under denaturing conditions with [14C]iodoacetate and digested with trypsin; 6 unique labeled Cys peptides, containing 6 unique Cys residues, were purified and sequenced. Six corresponding peptides were isolated from enzyme treated under denaturing conditions with [3H]NEM. These results eliminate the previous uncertainty regarding the number of Cys residues in the enzyme. A comparison of the sequences of the NH2-terminal 30 residues and the 6 Cys peptides of the pig heart NADP-dependent isocitrate dehydrogenase with the Escherichia coli NADP enzyme provides evidence for great dissimilarity between the two enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.