Abstract
We investigated the level of Cysteine-rich 61 (CYR61) in premature ovarian failure as well as its regulatory molecular mechanism in this study. Cyclophosphamide (CTX) was used to induce OGCs (rat ovarian granulosa cells) and rats to establish in vivo and in vitro premature ovarian failure models. H&E staining was used to detect the pathological changes of ovarian histopathology. Si-NLRP3 (NOD-like receptor thermal protein domain associated protein 3, NLRP3) and si-CYR61 were transfected into OGCs using lipofectamine 3000. RT-qPCR and western blot were used to detect the expressions of CYR61 in ovarian tissue and OGCs. It showed that the expression of CYR61 was significantly down-regulated in premature ovarian failure model. Cell viability was detected using a Cell Counting Kit-8 (CCK-8) kit. TUNEL (Terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling) staining was used to detect the apoptosis. 5-Ethynyl-2'-deoxyuridine (EdU) and SA-β-gal (senescence-associated β-galactosidase) staining were used to assess the proliferation and senescence. The expression of CYR61 in OGCs and ovarian tissues were detected by immunofluorescence and immunohistochemical staining. Overexpression of CYR61 significantly promoted OGCs proliferation and inhibited pyroptosis and apoptosis. Western blot was used to detect the protein expressions of p53 and p21 in OGCs. Flow cytometry was used to detect the pyroptosis. CYR61 overexpression inhibited the expression of NLRP3 and caspase-1 in CTX-induced OGCs according to western blot results. Moreover, we found that CYR61 overexpression down-regulated the protein expressions of p53 and p21 in CTX-induced OGCs. CYR61 inhibited CTX-induced OGCs senescence, and the mechanism may be related to the regulation of caspase-1/NLRP3-induced pyroptosis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have