Abstract

Top-down proteomics, the tandem mass spectrometric analysis of intact proteoforms, is the dominant method for proteoform characterization in complex mixtures. While this strategy produces detailed molecular information, it also requires extensive instrument time per mass spectrum obtained and thus compromises the depth of proteoform coverage that is accessible on liquid chromatography time scales. Such a top-down analysis is necessary for making original proteoform identifications, but once a proteoform has been confidently identified, the extensive characterization it provides may no longer be required for a subsequent identification of the same proteoform. We present a strategy to identify proteoforms in tissue samples on the basis of the combination of an intact mass determination with a measured count of the number of cysteine residues present in each proteoform. We developed and characterized a cysteine tagging chemistry suitable for the efficient and specific labeling of cysteine residues within intact proteoforms and for providing a count of the cysteine amino acids present. On simple protein mixtures, the tagging chemistry yields greater than 98% labeling of all cysteine residues, with a labeling specificity of greater than 95%. Similar results are observed on more complex samples. In a proof-of-principle study, proteoforms present in a human prostate tumor biopsy were characterized. Observed proteoforms, each characterized by an intact mass and a cysteine count, were grouped into proteoform families (groups of proteoforms originating from the same gene). We observed 2190 unique experimental proteoforms, 703 of which were grouped into 275 proteoform families.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call