Abstract

BackgroundInterleukin-6 (IL-6) is involved in fibroblast-like synoviocyte (FLS) activation and promotes pannus formation and bone and cartilage destruction in rheumatoid arthritis (RA). Cysteine-rich 61 (Cyr61) protein regulates cell proliferation, migration, and differentiation. The aim of this study was to investigate the role of Cyr61 in RA-FLS migration and invasion after IL-6 stimulation.MethodsWestern blotting, immunohistochemistry, reverse transcription-polymerase chain reaction, and real time-polymerase chain reaction were used to examine protein and mRNA levels of Cyr61, matrix metalloproteinases (MMPs), and other signalling proteins. Knockdown of gene expression was performed with siRNA, and RNA sequencing was performed for differential gene analysis. Migration and invasion were assessed by wound healing and Boyden chamber assays.ResultsCyr61 levels were elevated in FLSs from RA patients compared to those in osteoarthritis patients. Control and IL-6-treated FLSs showed differential gene expression. IL-6 stimulated protein synthesis of Cyr61, which was attenuated by the extracellular signal-related kinase 1/2 (ERK 1/2) inhibitor, PD98059, and knockdown of early growth response 3 (EGR3), but not of JUN. IL-6-induced Cyr61 protein synthesis increased expression of MMP2. Cyr61 promoted FLS migration and invasion in an autocrine manner. Knockdown of CYR61 and a neutralising antibody attenuated Cyr61 synthesis and IL-6-induced FLS migration.ConclusionsBy modulating the ERK/EGR3 pathway, IL-6 stimulated Cyr61 production and in turn increased invasiveness of FLS. Our data suggest that Cyr61 might be a potential target to prevent the progression of joint damage in RA.

Highlights

  • Interleukin-6 (IL-6) is involved in fibroblast-like synoviocyte (FLS) activation and promotes pannus formation and bone and cartilage destruction in rheumatoid arthritis (RA)

  • Increase in Cysteine-rich 61 (Cyr61) protein synthesis in the FLSs of RA patients induced by IL-6 As FLSs are involved in the pathogenesis of RA, and Cyr61 contributes to cell adhesion and migration, we first examined protein levels of Cyr61 in OA patients (n = 4) and RA patients (n = 4)

  • The results showed that IL-6 and Cyr61 protein levels were higher in RA synovial tissues than in OA synovial tissues. (Fig. 1c) we examined the effects of IL-6 on Cyr61 protein synthesis

Read more

Summary

Introduction

Interleukin-6 (IL-6) is involved in fibroblast-like synoviocyte (FLS) activation and promotes pannus formation and bone and cartilage destruction in rheumatoid arthritis (RA). Cysteine-rich 61 (Cyr61) protein regulates cell proliferation, migration, and differentiation. The aim of this study was to investigate the role of Cyr in RA-FLS migration and invasion after IL-6 stimulation. Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes destruction of cartilage and bone and systemic inflammation via the interactions of different types of inflammatory cells [1, 2]. Choi et al Arthritis Research & Therapy (2020) 22:275 invasion are mediated by cytoskeletal movement and the expression of adhesion proteins and proteolytic enzymes [4]. Cyr is stimulated by interleukin-17 (IL-17) and, in turn, promotes FLS proliferation, contributing to the hyperplasia of synoviocytes [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call