Abstract

Macaques, including cynomolgus and rhesus macaques, are important animal species used in drug metabolism studies. CYP2D44 is expressed in cynomolgus macaque liver and encodes a functional drug metabolizing enzyme, metabolizing typical human CYP2D substrates such as bufuralol and dextromethorphan. CYP2D44 is highly homologous to human CYP2D6 that is known to be polymorphic with a large inter-individual variation in metabolic activities, however, genetic polymorphisms have not been investigated in macaque CYP2D44. In the present study, screening of 78 cynomolgus and 40 rhesus macaques found a total of 67 variants, including 64 non-synonymous variants, 1 nonsense mutation, and 2 frameshift mutations, and 1 gene conversion, of which 14, 19, and 15 variants were unique to Indochinese cynomolgus macaques, Indonesian cynomolgus macaques, and Chinese rhesus macaques, respectively. Eleven of the 64 non-synonymous variants were located in substrate recognition sites, the regions important for protein function. By site-directed mutagenesis and metabolic assays, S175N, V185L, A235G, R242G, R245K, and N337D showed substantially decreased activity in bufuralol 1'-hydroxylation as compared with wild-type proteins. Moreover, two null alleles (c.128T>del and c.664G>T) were found in Indonesian cynomolgus macaques, but not in Indochinese cynomolgus macaques or Chinese rhesus macaques. These results suggest that genetic polymorphisms might account for the variability of CYP2D44-dependent metabolism in macaques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call