Abstract
CYP1A2, one of the most abundant hepatic cytochrome P450 enzymes, is involved in metabolism of several drugs and carcinogenic compounds. Data on the significance of CYP1A2 genetic polymorphisms in enzyme activity are highly inconsistent; therefore, the impact of CYP1A2 genetic variants (−3860G>A, −2467delT, −739T>G, −163C>A, 2159G>A) on mRNA expression and phenacetin O-dealkylation selective for CYP1A2 was investigated in human liver tissues and in psychiatric patients belonging to Caucasian populations. CYP1A2*1F, considered to be associated with high CYP1A2 inducibility, is generally identified by the presence of −163C>A polymorphism; however, we demonstrated that −163C>A existed in several haplotypes (CYP1A2*1F, CYP1A2*1L, CYP1A2*1M, CYP1A2*1V, CYP1A2*1W), and consequently, CYP1A2*1F was a much rarer allelic variant (0.4%) than reported in Caucasian populations. Of note, −163C>A polymorphism was found to result in an increase of neither mRNA nor the activity of CYP1A2. Moreover, hepatic CYP1A2 activity was associated with hepatic or leukocyte mRNA expression rather than genetic polymorphisms of CYP1A2. Consideration of non-genetic phenoconverting factors (co-medication with CYP1A2-specific inhibitors/inducers, tobacco smoking and non-specific factors, including amoxicillin+clavulanic acid therapy or chronic alcohol consumption) did not much improve genotype–phenotype estimation. In conclusion, CYP1A2-genotyping is inappropriate for the prediction of CYP1A2 function; however, CYP1A2 mRNA expression in leukocytes can inform about patients’ CYP1A2-metabolizing capacity.
Highlights
We aimed to identify non-genetic factors that can potentially modify CYP1A2 expression and/or activity; a more complex picture was expected to be obtained about the major determinants of CYP1A2 expression and function
The relative frequencies of the CYP1A2 haplotypes and genotypes in the liver tissue donors and patients with psychiatric disorders were compared to those reported in Caucasian populations (Table 2) [20,25,43,44]
The liver tissue donors and psychiatric patients all belonged to Caucasian populations, the frequencies of several CYP1A2 haplotypes markedly differed from that of the previously reported frequency data in Caucasians
Summary
CYP1A2, one of the most abundant hepatic cytochrome P450 enzymes, is involved in metabolism of several drugs and carcinogenic compounds. Data on the significance of CYP1A2 genetic polymorphisms in enzyme activity are highly inconsistent; the impact of CYP1A2 genetic variants (−3860G>A, −2467delT, −739T>G, −163C>A, 2159G>A) on mRNA expression and phenacetin O-dealkylation selective for CYP1A2 was investigated in human liver tissues and in psychiatric patients belonging to Caucasian populations. Of note, −163C>A polymorphism was found to result in an increase of neither mRNA nor the activity of CYP1A2. CYP1A2 activity was associated with hepatic or leukocyte mRNA expression rather than genetic polymorphisms of CYP1A2. 1. Introduction with regard to jurisdictional claims in CYP1A2, one of the most abundant drug-metabolizing cytochrome P450 (CYP) enzymes in the human liver, is involved in phase I biotransformation processes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have