Abstract
The cyclotron resonance absorption of two-dimensional electrons in semiconductor heterostructures in high magnetic fields is investigated. It is assumed that the ionized impurity potential is a dominant scattering mechanism, and the theory explicitly takes the Coulomb correlation effect into account through the Wigner phonons. The cyclotron resonance linewidth is in quantitative agreement with the experiment in the Wigner crystal regime at T=4.2K. Similar to the cyclotron resonance theory of the charge density waves pinned by short-range impurities, the present results for the long-range scattering also show the doubling of the resonance peaks. However, unlike the case of the charge density waves, our theory gives the pinning mode independent of the bulk compressibility of the substrate materials.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have