Abstract

AbstractCyclotron resonance effects on electron acceleration by two lasers of different wavelengths in the presence of a magnetic field have been investigated. Beating of two high-intensity lasers of different wavelengths, propagating in opposite direction to each other, can produce a high accelerating field gradient. An electron can be accelerated by such accelerating field to a sufficiently higher energy level. Additional energy gain has been observed due to the applied magnetic field. The magnetic field turns down the electrons to the acceleration region to extract more energy from the accelerating field produced by the beating of the lasers. At resonance, when the Larmor frequency is comparable to the laser frequency, this effect becomes more pronounced. Using some reasonable experimental parameters, we estimate the electron energy gain for this mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call