Abstract

The brain, comprising billions of neurons and intricate neural networks, is arguably the most complex organ in vertebrates. The diversity of individual neurons is fundamental to the neuronal network complexity and the overall function of the vertebrate brain. In jawed vertebrates, clustered protocadherins provide the molecular basis for this neuronal diversity, through stochastic and combinatorial expression of their various isoforms in individual neurons. Based on analyses of transcriptomes from the Japanese lamprey brain and sea lamprey embryos, genome assemblies of the two lampreys, and brain expressed sequence tags of the inshore hagfish, we show that extant jawless vertebrates (cyclostomes) lack the clustered protocadherins. Our findings indicate that the clustered protocadherins originated from a nonclustered protocadherin in the jawed vertebrate ancestor, after the two rounds of whole-genome duplication. In the absence of clustered protocadherins, cyclostomes might have evolved novel molecules or mechanisms for generating neuronal diversity which remains to be discovered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.