Abstract
Well-aligned multiwalled carbon nanotubes (MWCNTs) were synthesized from a cyclopentadienyliron dicarbonyl dimer precursor using chemical vapor deposition and were systematically characterized over a variety of growth conditions. The injection volume of the precursor was found to affect both the MWCNT diameter distribution and the amount of residual iron catalyst found in the sample. Low injection volumes produced relatively low impurity samples. Synthesized materials contained as little as 2.47% catalyst impurity by weight and were grown without predeposition of catalyst materials onto the substrate, reducing the need for damaging purification processes necessary to remove the substrate. Scanning electron microscopy was used to investigate catalyst contamination, synthesized MWCNT diameters, and growth morphology. Additionally, transmission electron microscopy was employed to qualitatively examine nanotube wall formation and sidewall defects. Longer growth times resulted in a higher quality product. Raman spectroscopy was used in conjunction with thermogravimetric analysis to confirm sample quality. The relative efficacy of the precursor and material quality are evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.