Abstract
Cycloaddition reactions of allenylphosphonates [(RO)(2)P(O)[(R(1))C═C═CR(2)(2)] with dialkyl acetylenedicarboxylates, 1,3-diphenylisobenzofuran, and anthracene have been investigated and compared with those of allenoates [(EtO(2)C)RC═C═CH(2)] and allenylphosphine oxides [Ph(2)P(O)(R(1))C═C═CR(2)(2)] in selected cases. Allenylphosphonates (RO)(2)P(O)(Ar)C═C═CH(2) with an α-aryl group preferentially undergo [4 + 2] cycloaddition with DMAD/DEAD under thermal activation, but in addition to the expected 1:1 (allene: DMAD) product, the reaction also leads to 1:2 as well as 2:1 products that were not reported before. When an extra vinyl group is present at the γ-carbon of allenylphosphonate [e.g., (OCH(2)CMe(2)CH(2)O)P(O)(Ph)C═C═CH(C═CHMe)], [4 + 2] cycloaddition takes place utilizing either the vinylic or the aryl end, but additionally a novel cyclization wherein complete opening of the [β,γ] carbon-carbon double bond of the allene is realized. In contrast to these, the reaction of allenylphosphonate (OCH(2)CMe(2)CH(2)O)P(O)(H)C═C═CMe(2) possessing a terminal ═CMe(2) group with DMAD occurs by both [2 + 2] cycloaddition and ene reaction. While the reaction of ═CH(2) terminal allenylphosphonates as well as allenylphosphine oxides with 1,3-diphenylisobenzofuran afforded preferentially endo-[4 + 2] cycloaddition products via [α,β] attack, the analogous allenoates [(EtO(2)C)RC═C═CH(2)] underwent exo-[4 + 2] cyclization. Under similar conditions, allenylphosphonates with a terminal ═CR(2) group gave only [β,γ]-cycloaddition products. An unusual ring-opening of a [4 + 2] cycloaddition product followed by ring-closing via [4 + 4] cycloaddition, as revealed by (31)P NMR spectroscopy, is reported. Anthracene reacted in a manner similar to 1,3-diphenylisobenzofuran, albeit with lower reactivity. Key products, including a set of exo- and endo- [4 + 2] cycloaddition products, have been characterized by single crystal X-ray crystallography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.