Abstract

BackgroundA travel mode shift to active transportation such as bicycling would help reduce traffic volume and related air pollution emissions as well as promote increased physical activity level. Cyclists, however, are at risk for exposure to vehicle-related air pollutants due to their proximity to vehicle traffic and elevated respiratory rates. To promote safe bicycle commuting, the City of Berkeley, California, has designated a network of residential streets as “Bicycle Boulevards.” We hypothesized that cyclist exposure to air pollution would be lower on these Bicycle Boulevards when compared to busier roads and this elevated exposure may result in reduced lung function.MethodsWe recruited 15 healthy adults to cycle on two routes – a low-traffic Bicycle Boulevard route and a high-traffic route. Each participant cycled on the low-traffic route once and the high-traffic route once. We mounted pollutant monitors and a global positioning system (GPS) on the bicycles. The monitors were all synced to GPS time so pollutant measurements could be spatially plotted. We measured lung function using spirometry before and after each bike ride.ResultsWe found that fine and ultrafine particulate matter, carbon monoxide, and black carbon were all elevated on the high-traffic route compared to the low-traffic route. There were no corresponding changes in the lung function of healthy non-asthmatic study subjects. We also found that wind-speed affected pollution concentrations.ConclusionsThese results suggest that by selecting low-traffic Bicycle Boulevards instead of heavily trafficked roads, cyclists can reduce their exposure to vehicle-related air pollution. The lung function results indicate that elevated pollutant exposure may not have acute negative effects on healthy cyclists, but further research is necessary to determine long-term effects on a more diverse population. This study and broader field of research have the potential to encourage policy-makers and city planners to expand infrastructure to promote safe and healthy bicycle commuting.

Highlights

  • A travel mode shift to active transportation such as bicycling would help reduce traffic volume and related air pollution emissions as well as promote increased physical activity level

  • This study contributes to a small but growing body of literature that investigates the network of relationships among active transport, air pollutant exposure, and health

  • Our results indicate that choosing low-traffic routes can decrease the exposure of bicyclists to air pollutants, potentially reducing associated detrimental health effects

Read more

Summary

Introduction

A travel mode shift to active transportation such as bicycling would help reduce traffic volume and related air pollution emissions as well as promote increased physical activity level. Short trips (under three miles) in particular have been identified as a good target for this travel mode shift; reducing these vehicle miles traveled in the United States by 0.8-1.8% would save an estimated 20,000-46,000 tons/day of CO2 equivalent of exhaust emissions nation-wide (a 0.80-1.78 percent reduction) [1]. Such a shift may improve public health through. A study in the Netherlands that evaluated the relationships between vehicle exhaust pollutant exposures during bicycle commuting and respiratory health effects yielded inconclusive results [9]. Decreased heart rate variability is associated with morbidity and mortality from cardiopulmonary disease [11], indicating that pollutant exposure associated with bicycling may have an adverse effect on cardiovascular health

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call