Abstract

Ovonic threshold switching (OTS) selector is a promising candidate to suppress the sneak current paths in emerging memory arrays, but there is still a gap between its performance and the rigorous requirement from memory devices, especially its endurance improvement is hindered by insufficient understanding of the mechanism. In this work, cycling induced degradation of GeSe-based OTS selectors is studied with electrical characterization techniques. The existence of metastable state between the on- and off-state during cycling is observed and statistically analyzed alongside with the gradual off-state leakage current increase. Such metastable degradation may be attributed to the generation of unstable Ge-Ge bonds that might be induced by element segregation, which is also responsible for the higher off-state leakage current in GeSe selectors after large cycling or with higher Ge component. This work provides experimental guidance for optimizing OTS selectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call