Abstract

This work presents the cyclical actuation of electric field sensitive microscale hydrogels employing dielectric coated coplanar electrodes. Microscale hydrogels are photopolymerized in-situ, and AC frequency-based actuation combined with pulse width modulation enabled controlled manipulation of hydrogel deformation. Stable actuation cycles are achieved with applied electric potentials from 20 Vpk-pk to 40 Vpk-pk, with a maximum true strain of 29% and a minimum rise time of 4.7 s. The peak and trough osmotic pressure for each system' s cycle is also analytically determined, with a peak pressure at 40 Vpk-pk of 201.1±38.3 kPa. A plateau in the peak-to-trough true strain is observed above 30 Vpk-pk. For comparative purposes a system without dielectric coated electrodes and employing external syringe pumps is also examined, and stable cyclical actuation was achieved for applied electric potentials of 5 Vpk-pk and 10 Vpk-pk. For this system the maximum stable rise time, true strain, and osmotic pressure are 8.1 s, 57%, and 429.2±81.9 kPa, respectively. The difference between the two systems highlights how optimization of the dielectric layer's thickness and uniformity can further enhance actuation performance. The electronically responsive hydrogel-based cyclical actuator developed within this work could be further employed for microfluidic regulation in portable low-power systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.