Abstract

A directionally solidified TWIP steel (Fe-25Mn-2.5Al-2.5Si) was prepared by liquid metal cooling technology. The microstructure and mechanical behavior were examined and compared with usually solidified samples. The directionally solidified TWIP steel shows a typical columnar grain structure, and the maximum true stress and true strain along the longitudinal direction of the sample are 1060MPa and 71% respectively. As a comparison, the usually solidified samples shows an equiaxed grain microstructure with the maximum true stress and true strain of only 994MPa and 58%, respectively. Moreover, the two solidification modes also lead to very different strain hardening behavior, particularly in the changes of strain hardening rate with strain. This suggests that the grain boundary plays a key role in the mechanical properties of TWIP steels, and changing the grain boundaries can be effective to improve the comprehensive mechanical properties of TWIP steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.