Abstract

To date various types of Cl(-) currents have been recorded in cardiac myocytes from different regions of the heart and from different species. Most of these are silent under basal conditions, but are rapidly activated under the influence of various agonists or physical stress that, in the long term, also lead to development of hypertrophy. Previously, we identified three different Cl(-) channel activities in neonatal rat cardiomyocytes: (i) Ca(2+) regulated, (ii) cAMP regulated (cystic fibrosis transmembrane conductance regulator Cl(-) channels) and (iii) osmoregulated Cl(-) channels. In this study, we examined comparatively the effects of cyclic stretch and endothelin-1 (ET-1) on Cl(-) channel activity in primary cultures of neonatal rat ventricular myocytes using an (125)I-efflux assay. About 4 min after the start of the (125)I-efflux (mean basal rate amounts 6.3% of total (125)I incorporated/min), the addition of 10 nM ET-1 or the application of cyclic stretch rapidly and transiently increased (125)I-efflux by 3.8%/min and 0.8%/min respectively above the basal rate. The stretch induced (125)I-efflux rate could be blocked by 100 microM Gd(3+) but it had no effect on the ET-1 response. After 24 h stimulation by ET-1 or cyclic stretch the myocytes responded by hypertrophy which is detected by increases of (3)H-leucine incorporation into protein and protein/DNA ratio. In conclusion, cyclic stretch as well as ET rapidly and transiently activate Cl(-) channels in rat neonatal cardiomyocytes. The results suggest that the activation of distinct types of Cl(-) channels (co)transduce the stretch- and agonist-induced hypertrophic responses in these myocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call