Abstract
We introduce a decorated configuration space $\mathscr{C}\!{\rm onf}_n^\times(a)$ with a potential function $\mathcal{W}$. We prove the cluster duality conjecture of Fock-Goncharov for Grassmannians, that is, the tropicalization of $\big(\mathscr{C}\!{\rm onf}_n^\times(a), \mathcal{W}\big)$ canonically parametrizes a linear basis of the homogeneous coordinate ring of the Grassmannian $\operatorname{Gr}_a(n)$ with respect to the Pl\"ucker embedding. We prove that $\big(\mathscr{C}\!{\rm onf}_n^\times(a), \mathcal{W}\big)$ is equivalent to the mirror Landau-Ginzburg model of the Grassmannian considered by Eguchi-Hori-Xiong, Marsh-Rietsch and Rietsch-Williams. As an application, we show a cyclic sieving phenomenon involving plane partitions under a sequence of piecewise-linear toggles.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have