Abstract
We show that cyclic quantum evolution can be realized and the Aharonov-Anandan (AA) geometric phase can be determined for any spin-j system driven by periodic fields. Two methods are extended for the study of this problem: the generalized spin-coherent-state technique and the Floquet quasienergy approach. Using the former approach, we have developed a generalized Bloch-sphere model and presented a SU(2) Lie-group formulation of the AA geometric phase in the spin-coherent state. We show that the AA phase is equal to j times the solid angle enclosed by the trajectory traced out by the tip of a generalized Bloch vector. General analytic formulas are obtained for the Bloch vector trajectory and the AA geometric phase in terms of external physical parameters. In addition to these findings, we have also approached the same problem from an alternative but complementary point of view without recourse to the concept of coherent-state terminology. Here we first determine the Floquet quasienergy eigenvalues and eigenvectors for the spin-j system driven by periodic fields. This in turn allows the construction of the time-evolution propagator, the total wave function, and the AA geometric phase in a more general fashion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. A, Atomic, molecular, and optical physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.