Abstract

Oocyte meiosis is a prolong series of events that are comprised several intermittent channels in mammals. Oocyte meiosis starts during fetal life and then gets arrested at diplotene stage of first meiotic prophase in follicular oocyte. The continuous transfer of cyclic adenosine 3’, 5’-monophosphate (cAMP) and cyclic guanosine 3’, 5’-monophosphate (cGMP) from encircling granulosa cells to the oocyte through gap junctions helps in the maintenance of their high level required to achieve the long-lasting diplotene arrest so-called germinal vesicle stage. Phosphodiesterase inhibitors have been used to elevate intracellular level of both cyclic nucleotides and prevent spontaneous resumption of meiosis in oocytes under in vitro culture conditions. On the other hand, disruption of gap junction either by pituitary gonadotropin or by physical removal of encircling granulosa cells interrupts transfer of these nucleotides to the oocyte. As a result, intraoocyte cAMP as well as cGMP levels are decreased drastically that initiate downstream pathways to destabilize maturation-promoting factor (MPF). The destabilized MPF initiates meiotic resumption from diplotene arrest in mammalian oocytes. Oocyte meiosis further progresses from metaphase I to metaphase II stage and extrudes first polar body to get converted into haploid female gamete at the time of ovulation. Indeed, high level of cAMP as well as cGMP levels maintains diplotene arrest for a long time in follicular oocytes. On the other hand, transient decrease of their levels drives resumption from diplotene arrest, thereby meiotic maturation process, which enables oocyte to achieve developmental competency. Any defect in this process directly affects oocyte quality and thereby reproductive outcome in mammals including human.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.