Abstract

IntroductionThis study compared the static and dynamic cyclic fatigue resistance of contemporary nickel-titanium instruments with different kinematic, metallurgic, and design features to establish whether the fatigue-reducing effect of the pecking motion differs among different nickel-titanium instruments. MethodsProTaper Gold (PTG), Hyflex EDM (EDM), Reciproc Blue (RPB), and WaveOne Gold (WOG) files were divided into 2 groups of 10 for the static and dynamic cyclic fatigue resistance tests. A stainless steel artificial canal with 1.5-mm inner diameter, 60° angulation, and 3-mm radius of curvature was used. In the dynamic cyclic fatigue resistance test, speeds were set at 100 and 200 mm/min for the descending and ascending motion, respectively. The number of cycles to fracture (NCF) was calculated, the fractured lengths were recorded, and fractographic analysis of the fractured surfaces was carried out by scanning electron microscopy. Data were analyzed statistically with the Kruskal-Wallis test with Bonferroni correction (alpha = 0.05). ResultsThe RPB and EDM showed significantly higher NCF in the static and dynamic cyclic fatigue resistance tests (P < .05). The dynamic cyclic fatigue resistance test showed significantly higher NCF than the static cyclic fatigue resistance test in the PTG and EDM (P < .05). There was no significant difference between the RPB and WOG (P > .05). ConclusionsIn the experimental condition where the ascending speed was higher than the descending speed, the dynamic cyclic fatigue resistance was significantly higher than the static cyclic fatigue resistance in continuous rotary instruments, but not in reciprocating instruments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call