Abstract

Application of support vector regression (SVR) with chaotic sequence and evolutionary algorithms not only could improve forecasting accuracy performance, but also could effectively avoid converging prematurely (i.e., trapping into a local optimum). However, the tendency of electric load sometimes reveals cyclic changes (such as hourly peak in a working day, weekly peak in a business week, and monthly peak in a demand planned year) due to cyclic economic activities or climate seasonal nature. The applications of SVR model to deal with cyclic electric load forecasting have not been widely explored. This investigation presents a SVR-based electric load forecasting model which applied a novel hybrid algorithm, namely chaotic genetic algorithm (CGA), to improve the forecasting performance. With the increase of the complexity and the larger problem scale of tourism demands, genetic algorithm (GA) is often faced with the problems of premature convergence, slowly reaching the global optimal solution or trapping into a local optimum. The proposed CGA based on the chaos optimization algorithm and GA, which employs internal randomness of chaos iterations, is used to overcome premature local optimum in determining three parameters of a SVR model. A numerical example from an existed reference is used to elucidate the forecasting performance of the proposed SSVRCGA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than ARIMA and TF-ε-SVR-SA models. Therefore, the SSVRCGA model is a promising alternative for electric load forecasting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.