Abstract

The cyclic deformation behaviour of polycrystalline Cu, Cu–10 wt% Zn and Cu–32 wt% Zn was systematically investigated in the plastic strain amplitude range of 1 × 10−4–4 × 10−3. The differences in the cyclic stress–strain (CSS) responses and fatigue cracking behaviour between Cu, Cu–10 wt% Zn and Cu–32 wt% Zn were compared. It was found that the occurrence of a cyclic saturation for Cu–10 wt% Zn and Cu–32 wt% Zn strongly depends on the applied strain amplitude, whereas polycrystalline Cu always displays cyclic saturation. Surface deformation morphologies were analyzed by scanning electron microscopy (SEM). One of the major features observed is that the slip bands become increasingly homogenous with Zn addition. The fatigue cracks were found to frequently nucleate along the annealing twin boundaries (TBs) in Cu–10 wt% Zn and Cu–32 wt% Zn, but not in polycrystalline Cu. Based on these experimental results, the cyclic deformation response and fatigue cracking behaviour are discussed, and a developed TB cracking mechanism is proposed to explain the difference in fatigue cracking mechanisms in Cu, Cu–10 wt% Zn and Cu–32 wt% Zn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.