Abstract

Capacity models to assess structural safety are primarily based on experimental outcomes typical of new constructions. In order to analyze deformation and strength mechanisms of members that do not comply to current seismic codes and practices, an experimental investigation was undertaken on full-scale columns reinforced with deformed or plain rebars. The experiments involved eight tests under monotonic or cyclic actions on square or rectangular reinforced concrete columns designed according to provisions, construction practice, and material properties enforced between the 1940s and 1970s. Experimental outcomes allowed pointing out global and local behavior of RC columns typically found in existing constructions, in which both plain and deformed bars can be found. Theoretical plastic rotation capacities provided by the proposed supplement to the current ASCE standard are discussed in this paper and compared to those experimentally obtained. The results indicate that predicted plastic rotations corresponding to significant loss of lateral-force capacity are very conservative if compared with experimental outcomes. This seems especially clear in the case of columns reinforced with plain rebars. For these columns, the contribution of the base rotation on the global deformation mechanism is considerable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.