Abstract
1. To delineate the mechanism by which cyclic AMP (cAMP) suppresses interleukin (IL)-5 synthesis, the effects of prostaglandin (PG) E2, forskolin, dibutyryl (db)-cAMP and the Ca2+ ionophore, ionomycin on cytokine synthesis, proliferation and CD25 expression of human T cells were investigated. Further studies were performed by measurement of the intracellular concentrations of cyclic AMP ([cAMP]i) and Ca2+ ([Ca2+]i) and by electrophoretic mobility shift analysis (EMSA). 2. PGE2, forskolin and db-cAMP suppressed IL-5 production by human T cell line following T cell receptor (TCR)-stimulation. PGE2 suppressed TCR-induced messenger RNA (mRNA) expression of IL-2, IL-4 and IL-5, as well as proliferation and CD25 expression. 3. Cyclic AMP-mediated suppression of cytokine synthesis, proliferation and CD25 expression in human T cells were attenuated by ionomycin. 4. [cAMP]i was increased by PGE2 and forskolin. PGE2 suppressed the TCR-induced biphasic increase in [Ca2+]i. EMSA revealed that four specific protein-DNA binding complexes related to NF-AT were detected at the IL-5 promoter sequence located from -119 to -90 relative to the transcription initiation site. The slowest migrating complex induced by TCR stimulation was enhanced by PGE2 and further upregulated by ionomycin. Another binding which did not compete with cold AP-1 oligonucleotides, was constitutively present and was unaffected by PGE2 but enhanced by ionomycin. 5. The suppressive effect of cyclic AMP on human IL-5 synthesis is mediated by interference with intracellular Ca2+ mobilization but distinct from the NF-AT-related pathway.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have