Abstract

The present study examines novel mechanisms that regulate levels of the RI alpha subunit of cAMP-dependent protein kinase. We found that RI alpha protein is induced threefold by 8-(4-chlorophenyl)thio-cAMP in hormone responsive rat Sertoli cells, while total RI alpha mRNA is not correspondingly induced. Two RI alpha mRNA isoforms with different 5' untranslated sequences (RI alpha 1a and RI alpha 1b) are produced from the RI alpha gene in Sertoli cells. Deletion/mutation analysis of the cAMP-response-element-containing promoter upstream of the RI alpha exon 1b revealed that while mutation of the cAMP response element had no effects on cAMP-mediated induction, a 73-bp region of the RI alpha exon 1b itself conferred a fivefold to eightfold induction of reporter activity to homologous and heterologous promoters. The responsiveness of this region was dependent on a sense orientation downstream of the promoter start sites and had no effect on reporter mRNA, indicating that the cAMP-mediated induction occurs at the post-transcriptional level. Modeling of the RI alpha 1b 5' UTR secondary structure revealed a 5' CAP-proximal, strong stem-loop presenting an element similar to multiple start-site element downstream-1 (GCTCGG) in the loop region. RNA-EMSAs performed with the labeled RI alpha 1b 5' UTR showed stabilization of a protein/RNA complex in extracts from 8-(4-chlorophenyl)thio-cAMP stimulated Sertoli cells. This complex was abolished by mutation of the multiple start-site element downstream-1-like element. Our findings indicate that there is a cAMP-mediated induction of RI alpha expression at the post-transcriptional level, dependent on the 5' UTR of RI alpha 1b mRNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call