Abstract

This study was designed to examine whether a cyclic adenosine monophosphate (cAMP) phosphodiesterase (PDE), PDE4, is expressed in human atrium and contributes to the control of electrical stability. Atrial fibrillation is accompanied by a profound remodeling of membrane receptors and alterations in cAMP-dependent regulation of Ca(2+) handling. Being responsible for cAMP hydrolysis, PDEs are likely to play a role in this setting. In the rodent heart, PDE4 contributes up to 60% of total cAMP-hydrolytic activity. However, its role in the human heart remains controversial. L-type Ca(2+) current and spontaneous Ca(2+) release were recorded in isolated human atrial myocytes. Intracellular cAMP was measured by live cell imaging using a fluorescence resonance energy transfer-based sensor. Contractile force and arrhythmias were recorded in human atrial trabeculae. PDE activity was measured in human atrial tissue from patients in sinus rhythm and permanent atrial fibrillation. PDE4 is expressed in human atrial myocytes and accounts for approximately 15% of total PDE activity. PDE4D represents the major PDE4 subtype. PDE4 inhibition increased intracellular cAMP and L-type Ca(2+) current and dramatically delayed their decay after a brief β-adrenergic stimulation. PDE4 inhibition also increased the frequency of spontaneous Ca(2+) release at baseline, as well as the contractile response and the incidence of arrhythmias in human atrial strips during β-adrenergic stimulation. Total PDE activity decreased with age, and the relative PDE4 activity was lower in patients with permanent atrial fibrillation than in age-matched sinus rhythm controls. PDE4 is critical in controlling cAMP levels and thereby Ca(2+) influx and release in human atrial muscle, hence limiting the susceptibility to arrhythmias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.