Abstract
Image dehazing is a common operation in autonomous driving, traffic monitoring and surveillance. Learning-based image dehazing has achieved excellent performance recently. However, it is nearly impossible to capture pairs of hazy/clean images from the real world to train an image dehazing network. Most of existing dehazing models that are learnt from synthetically generated hazy images generalize poorly on real-world hazy scenarios due to the obvious domain shift. To deal with this unpaired problem arisen by real-world hazy images, we present Cycle Spectral Normalized Soft likelihood estimation Patch Generative Adversarial Network (Cycle-SNSPGAN) for image dehazing. Cycle-SNSPGAN is an unsupervised dehazing framework to boost the generalization ability on real-world hazy images. To leverage unpaired samples of real-world hazy images without relying on their clean counterparts, we design an SN-Soft-Patch GAN and exploit a new cyclic self-perceptual loss which avoids using the ground-truth image to compute the perceptual similarity. Moreover, a significant color loss is adopted to brighten the dehazed images as human expects. Both visual and numerical results show clear improvements of the proposed Cycle-SNSPGAN over state-of-the-arts in terms of hazy-robustness and image detail recovery, with even only a small dataset training our Cycle-SNSPGAN. Code has been available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/yz-wang/Cycle-SNSPGAN</uri> .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.