Abstract

Spatially and temporally resolved digital particle image velocimetry measurements are presented of flow complexities in a nominally two-dimensional, symmetric, duct with an oscillating constriction. The motivation for this research lies in advancing the state-of-the-art in applying integral control volume analysis to modeling unsteady internal flows. The specific target is acoustic modeling of human phonation. The integral mass and momentum equations are directly coupled to the acoustic equations and provide quantitative insight into acoustic source strengths in addition to the dynamics of the fluid-structure interactions in the glottis. In this study, a square cross-section duct was constructed with symmetric, computer controlled, oscillating constrictions that incorporate both rocking as well as oscillatory open/close motions. Experiments were run in a free-surface water tunnel over a Strouhal number range, based on maximum jet speed and model length, of 0.012–0.048, for a fixed Reynolds number, based on maximum gap opening and maximum jet speed, of 8000. In this study, the constriction motions were continuous with one open-close cycle immediately following another. While the model and its motions were nominally two-dimensional and symmetric, flow asymmetries and oscillation frequency dependent cycle-to-cycle variations were observed. These are examined in the context of terms in the integral conservation equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.