Abstract

New concept of high-strain-rate processes in solids is developed using the nonlocal theory of nonequilibrium transport. The interdisciplinary theoretical approach is constructed on the base of nonequilibrium statistical mechanics and cybernetic physics proposes integral mathematical models accounting spatiotemporal correlations which give rise to the system structurization under dynamic external loading. Cybernetic methods are used to describe the system evolution according to the internal control. In the framework of the theory a general integral stress-strain relationship depending on the strain-rate and the external pulse duration describes both the elastic medium reaction to an external loading and a transition to plastic flow. The model shows the difference between the shock loading and continuous one which is growing with the loading strain-rate. Constructed on the integral relationship a model of elastic-plastic shock-induced wave changing its waveform during its propagation along a material, is able to describe all complex of the experimentally observed laws that cannot be explained in scope of the conventional continuous mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call