Abstract

High-yield syntheses up to molar scales for salts of [BH(CN)3 ]- (2) and [BH2 (CN)2 ]- (3) starting from commercially available Na[BH4 ] (Na5), Na[BH3 (CN)] (Na4), BCl3 , (CH3 )3 SiCN, and KCN were developed. Direct conversion of Na5 into K2 was accomplished with (CH3 )3 SiCN and (CH3 )3 SiCl as a catalyst in an autoclave. Alternatively, Na5 is converted into Na[BH{OC(O)R}3 ] (R=alkyl) that is more reactive towards (CH3 )3 SiCN and thus provides an easy access to salts of 2. Some reaction intermediates were identified, for example, Na[BH(CN){OC(O)Et}2 ] (Na7 b) and Na[BH(CN)2 {OC(O)Et}] (Na8 b). A third entry to 2 and 3 uses ether adducts of BHCl2 or BH2 Cl such as the commercial 1,4-dioxane adducts that react with KCN and (CH3 )3 SiCN. Alkali metal salts of 2 and 3 are convenient starting materials for organic salts, especially for low viscosity ionic liquids (ILs). [EMIm]3 has the lowest viscosity and highest conductivity with 10.2 mPa s and 32.6 mS cm-1 at 20 °C known for non-protic ILs. The ILs are thermally, chemically, and electrochemically robust. These properties are crucial for applications in electrochemical devices, for example, dye-sensitized solar cells (Grätzel cells).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.