Abstract
The unicellular eukaryotic algae Cyanidium, Galdieria, and Cyanidioschyzon (herein referred to as “cyanidia”) are the only photoautotrophs occurring in acidic (pH<4.0) geothermal environments at temperatures above 40°C. In Yellowstone National Park (YNP), we examined an annual event we refer to as “mat decline,” where cyanidial mats undergo a seasonably defined color fading. Monthly sampling of chemical, physical, and biological features revealed that spring aqueous chemistry was essentially invariant over the 1‐year sampling period. However, multiple regression analysis suggested that a significant proportion of algal most probable number (MPN) count variation could be explained by water temperature and UV–visible (VIS) light exposure. Irradiance manipulations (filtering) were then coupled with 14CO2 incorporation experiments to directly demonstrate UV inhibition of photosynthesis. Population dynamics were also evident in 18S rDNA PCR clone libraries, which were different in composition at MPN maxima and minima, and again evident in PCR‐amplified chloroplast genomic short sequence repeat (SSR) analysis. PCR‐cloned SSRs of the YNP isolates and mats were very similar to Cyanidioschyzon merolae Luca, Taddei et Varano, although distance analysis could distinguish the YNP cyanidia from the genome sequenced C. merolae that was isolated in Italy. Unexpectedly, while phylogenetic analysis of 18S rDNA sequences and SSR sequences derived from YNP cyanidial mats and pure cultures suggested these algae are most closely related to C. merolae (99.7% identity), cell morphology was consistent with the genera Galdieria and Cyanidium.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have