Abstract

Activation of NMDA receptors plays an important role in cyanide neurotoxicity. Cyanide indirectly activates the receptor by inducing neuronal release of glutamate and also enhances receptor-mediated responses by a direct interaction with the receptor complex. This study investigated the mechanism in cerebellar granule cells by which cyanide enhances NMDA-induced Ca2+ influx. Cyanide (50 μM) increased the influx of Ca2+ over the NMDA concentration range of 0.5–500 μM. Experiments showed that cyanide does not interact with the receptor's glycine or PKC mediated phosphorylation regulatory sites. N-ethylmaleimide, a thiol alkylating agent which inactivates the redox regulatory sites of the receptor, blocked the enhancing effect of cyanide. Pretreatment of cells with 5,5-dithio-bis-2-nitrobenzoic acid (DTNB), a compound that oxidizes the receptor redox sites, had no effect on the response to cyanide. On the other hand, the nonpermeant reducing agents, dithiothreitol or cysteine, further increased the cyanide effect. These observations can be explained by cyanide interacting with redox sensitive disulfide groups that are not accessible to the non-permeant reducing agents. It is proposed that cyanide interacts with a redox site(s) located either on the intracellular receptor domain or in the transmembrane hydrophobic domain. Furthermore the enhancement by cyanide of the excitotoxic actions of NMDA involves receptor sites that are sensitive to oxidation/reduction and this interaction contributes to the neurotoxic action of cyanide. © 1999 John Wiley & Sons, Inc. J Biochem Toxicol 13: 253–259, 1999

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.