Abstract

Metabolic reprogramming of macrophages initiates the polarization of pro-inflammatory macrophages that exacerbates adipocyte dysfunction and obesity. The imbalance of mitochondrial Ca2+ homeostasis impairs mitochondrial function and promotes inflammation. Connexin 43 (Cx43), a ubiquitous gap junction protein, has been demonstrated to regulate intracellular Ca2+ homeostasis. Here we explored whether macrophage Cx43 affects the obesity process by regulating the polarization of macrophage. HFD treatment induced obesity and exacerbated macrophages infiltration with upregulation of macrophages Cx43. Macrophage-specific knockout of Cx43 reduced HFD-induced obesity by alleviating inflammation in adipose tissue, with less pro-inflammatory M1 macrophage infiltration. Consistently, inhibition or knockdown of Cx43 improved palmitic acid (PA) induced mitochondrial dysfunction, as indicated by improved oxidative phosphorylation (OXPHOS), reduced formation of mitochondria-associated membranes (MAM) and mitochondrial Ca2+ overload. Mechanistically, Cx43 interacted with the mitochondrial Ca2+ uniporter (MCU) and knockdown of Cx43 alleviated PA-induced succinate dehydrogenase (SDH) oxidation by lowering MCU-mediated mitochondrial Ca2+ uptake, which then, promoting the polarization of pro-inflammatory M1 macrophages. Thus, this study identified Cx43 as a mitochondrial Ca2+ regulator that aggravates obesity via promoting macrophages polarized to M1 pro-inflammatory phenotype and suggests that Cx43 might be a promising therapeutic target antagonizing obesity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call