Abstract

Stimulated Brillouin backscattering in a cw-pumped long optical polarization-maintaining fiber ring cavity excites spontaneous stable mode-locking. But the shortest pulses allowed by the Brillouin gain bandwidth imply an active mode-locking, which we have achieved by using a phase modulator inside the ring. The experiment is carried out in the infrared at 1.319μm, and in narrow frequency domains, close to N integer multiples of the ring FSR, we observe two type of mode-locking: either a maximum compression of the Brillouin solitons, or a stable splitting into N equally spaced pulses. Case N=3 is more detailed. Experiment implies a slight polarization modulation by the phase modulation. Simulations carried out through the coherent three-wave model are in very good agreement for both mode-locking mechanisms. Introduction of a small amplitude modulation together with the intra-cavity phase modulation satisfactorily explains the stable splitting domain as well as the compression domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call