Abstract

We introduce a construction which allows us to identify the elements of the skeletons of a CW-complex P(m) and the monomials in m variables. From this, we infer that there is a bijection between finite CW-subcomplexes of P(m), which are quotients of finite simplicial complexes, and certain bigraded standard Artinian Gorenstein algebras, generalizing previous constructions of Faridi and ourselves.We apply this to a generalization of Nagata idealization for level algebras. These algebras are standard graded Artinian algebras whose Macaulay dual generator is given explicitly as a bigraded polynomial of bidegree (1,d). We consider the algebra associated to polynomials of the same bidegree (d1,d2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.