Abstract
We extend the homotopy theories based on point reduction for finite spaces and simplicial complexes to finite acyclic categories and $$\varDelta $$ -complexes, respectively. The functors of classifying spaces and face posets are compatible with these homotopy theories. In contrast with the classical settings of finite spaces and simplicial complexes, the universality of morphisms and simplices plays a central role in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.