Abstract

Machining of modern materials requires high performance tools. More than 60% of metal cutting tools used are coated to limit abrasive wear. As the harder material known to man, diamond and consequently Chemical Vapour Deposited (CVD) diamond coatings allow to increase performances of tungsten carbide tools, i.e. tool life, machined surface quality, and to decrease costs. However, CVD diamond coated tools quality is very dependent on the surface preparation as much as the fabrication process parameters. This paper aims to discuss the influence of pretreatments before deposition, and thermal stresses induced by the cooling operation. Diamond deposition process is described emphasizing the role of every step and its function. Some numerical simulations of the residual stresses at the interface are presented, enlightening that tool geometry is an important factor while using a coating, and that tools must be designed for the diamond coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call