Abstract

We present inverted spin-valve devices fabricated from chemical vapor deposition (CVD)-grown bilayer graphene (BLG) that show more than a doubling in device performance at room temperature compared to state-of-the-art bilayer graphene spin valves. This is made possible by a polydimethylsiloxane droplet-assisted full-dry transfer technique that compensates for previous process drawbacks in device fabrication. Gate dependent Hanle measurements reveal spin lifetimes of up to 5.8 ns and a spin diffusion length of up to 26 μm at room temperature combined with a charge carrier mobility of about 24 000 cm2(V s)-1 for the best device. Our results demonstrate that CVD-grown BLG shows equally good room temperature spin transport properties as both CVD-grown single-layer graphene and even exfoliated single-layer graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.