Abstract

Electrical characterization of Al/SiNx:H/InP structures shows that ECR nitrogen plasma cleaning of InP surfaces gives rise to a noticeable improvement in the interface quality, whereas insulator and semiconductor bulk properties are maintained at a level sufficient to be used as the gate dielectric in MIS devices. Nitrogen plasma exposure was carried out just before the SiNx plasma deposition without vacuum breaking. To obtain interface state density and to detect deep levels in the semiconductor bulk, deep level transient spectroscopy (DLTS) measurements were carried out. We have also evaluated the insulator damage density, the so-called disorder-induced gap states (DIGS), by means of conductance transient analysis. Our results show that the plasma exposure in N2 atmospheres is a valuable and simple surface conditioning method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.