Abstract

ABSTRACT The understanding of temperature distribution along the tool-chip interface is important for machining process planning and tool design. Among many temperature modeling studies, uniform heat partition ratio and/or uniform heat intensity along the interface are frequently assumed. This assumption is not true in actual machining and can lead to ill-estimated results at the presence of sticking and sliding. This paper presents a new analytical cutting temperature modeling approach that considers the combined effect of the primary and the secondary heat sources and solves the temperature rise along the tool-chip interface based on the non-uniform heat partition ratio and non-uniform heat intensity along the interface. For the chip side, the effect of the primary shear zone is modeled as a uniform moving oblique band heat source, while that of the secondary shear zone is modeled as a non-uniform moving band heat source within a semi-infinite medium. For the tool side, the effect of the secondary heat source is modeled as a non-uniform static rectangular heat source within a semi-infinite medium; and the primary heat source affects the temperature distribution on the tool side indirectly by affecting the heat partition ratio along the interface. Imaginary heat sources are considered as a result of the adiabatic boundary condition involved along the tool-chip interface and of the insulated boundary conditions along both the chip back side and the tool flank face. The temperature matching condition along the tool-chip interface leads to the solution of distributed heat partition ratio by solving a set of linear equations. The proposed model is verified based on the published experimental data of the conventional turning process and it shows both satisfactory accuracy and improved match.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call