Abstract

Silicon carbide (SiC) is a promising semiconductor material for high-temperature, high-frequency, high-power, and energy-saving applications. However, it is so hard and chemically stable that there are few efficient conventional machining methods for it. We have developed plasma chemical vaporization machining (PCVM), an atmospheric-pressure plasma etching process, and investigated its application to the processing of SiC substrates. In this paper, the cutting characteristics of a SiC substrate by PCVM with a wire electrode are described. We found that increasing the rf power and reactive gas concentration increases the etch rate and that the etch width can be reduces by increasing the SF6 concentration. The maximum etch rate was 2.1 μm/min and the minimum etch width was 220 μm. It was also demonstrated that a SiC wafer prethinned to 100 μm can be successfully cut without breaking or cracking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call