Abstract

Silicon carbide (SiC) is a promising semiconductor material for high-temperature, high-frequency, high-power, and energy-saving applications. However, because the hardness and chemical stability of SiC are high, few conventional machining methods can handle this material efficiently. We previously developed a plasma chemical vaporization machining (PCVM) technique, which is an atmospheric-pressure plasma etching process, and investigated its application to the processing of SiC substrates. In this paper, we propose a novel style of PCVM technique for dicing, using slit apertures to confine the plasma. From experiments by means of an apparatus with a one-slit aperture formed by two masks, it was found that the kerf loss was almost proportional to the slit width, and that the etching depth increased with RF power. Furthermore, from experiments on a SiC wafer, we obtained a 130-μm etching depth and 300-μm kerf loss for an 11-min processing time and 200-μm slit width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.