Abstract

In the present study, the conditions of chip propagation or fracture in orthogonal oblique cutting of beech wood (Fagus silvatica) in the 90°–0° direction for a type-I chip has been investigated. The force required for orthogonal wood cutting is pronouncedly variable, which is the consequence of exchangeable different ways of material breakdown. The chip formation process is discontinuous because of interrupted splitting of the material in front of the cutting tool. A 10-mm-thick specimen was cut at a rake angle of 31° and 42° with chip thicknesses ranging from 0.1 to 0.3 mm. The chip segment length increased with the chip thickness. A chip of varying length and thickness was modelled using the finite element method. For each case, the bending or compressive stress in the chip and the stress intensity factor at the crack tip was calculated. The segment length of the chip can be calculated by taking into account the condition that a crack propagates when the stress intensity factor KI at the crack tip equals the critical stress intensity factor KIC, and the bending or compressive stress σx in the chip is smaller than the strength σu. Good agreement between the calculated and the measured values was observed. The chip segment length can change considerably already with small changes in the bending strength and critical stress intensity factor. This large sensitivity is also confirmed by the fluctuation of the measured chip segment lengths by as much as 400%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call