Abstract

This study proposes a novel mechanistic cutting force model for flat end milling. The prominent feature of this model lies in that the overall cutting forces contributed by both the flank edge and the bottom edge cuttings are simultaneously taken into consideration. In the model formulation, to reflect the size effect in flank cutting, the flank cutting force coefficients are treated as an exponent function of instantaneous uncut chip thickness and are identified by nonlinear least-square algorithm. With the help of the calibrated flank cutting force coefficients, the bottom cutting force coefficients are instantaneously calibrated by the force component that is obtained by subtracting the flank force component from the total measured force. It is shown that the bottom cutting force coefficients can be treated as constants. The validity of the proposed cutting force model is also experimentally demonstrated over a relatively wide range of cutting conditions. It turns out that the bottom edge cutting has a remarkable effect on total cutting forces, when the axial depth of cut is relatively small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call