Abstract
We give conditions under which near-critical stochastic processes on the half-line have infinitely many or finitely many cutpoints, generalizing existing results on nearest-neighbour random walks to adapted processes with bounded increments satisfying appropriate conditional increment moments conditions. We apply one of these results to deduce that a class of transient zero-drift Markov chains in $\mathbb{R}^d$, $d \geq 2$, possess infinitely many separating annuli, generalizing previous results on spatially homogeneous random walks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Latin American Journal of Probability and Mathematical Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.