Abstract

CUT&RUN is a powerful tool to study protein-DNA interactions in vivo. DNA fragments cleaved by the targeted micrococcal nuclease identify the footprints of DNA-binding proteins on the chromatin. We performed CUT&RUN on human lung carcinoma cell line A549 maintained in a multi-well cell culture plate to profile RNA polymerase II. Long (> 270 bp) DNA fragments released by CUT&RUN corresponded to the bimodal peak around the transcription start sites, as previously seen with chromatin immunoprecipitation. However, we found that short (< 120 bp) fragments identify a well-defined peak localised at the transcription start sites. This distinct DNA footprint of short fragments, which constituted only about 5% of the total reads, suggests the transient positioning of RNA polymerase II before promoter-proximal pausing, which has not been detected in the physiological settings by standard chromatin immunoprecipitation. We showed that the positioning of the large-size-class DNA footprints around the short-fragment peak was associated with the directionality of transcription, demonstrating the biological significance of distinct CUT&RUN footprints of RNA polymerase II.

Highlights

  • CUT&RUN (Cleavage Under Targets and Release Using Nuclease) (Skene and Henikoff 2017) is a powerful tool to map protein-DNA interactions in vivo

  • We tested the feasibility of performing CUT&RUN on adherent cells attached to a multi-well polystyrene cell culture plate with polymerase II (Pol II) antibodies (Fig. 1a)

  • We have devised “CUT&RUN on plate” (CROP) for profiling protein-DNA interactions in adherent cells maintained in a multi-well cell culture plate

Read more

Summary

Introduction

CUT&RUN (Cleavage Under Targets and Release Using Nuclease) (Skene and Henikoff 2017) is a powerful tool to map protein-DNA interactions in vivo. CUT&RUN directs Protein A/G-fused micrococcal nuclease (pAG-MNase) (Meers et al 2019a) to the antibody-bound protein-DNA complex, with a subsequent release of DNA fragments cleaved in the presence of calcium ions. There are two major advantages of CUT&RUN over conventional chromatin immunoprecipitation (ChIP). CUT&RUN does not require sonication for chromatin fragmentation. CUT&RUN identifies the footprints of DNA-binding proteins on the chromatin, which revealed distinct binding configurations of transcription factors in yeast (Skene and Henikoff 2017) and mammalian cells (Meers et al 2019b)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.