Abstract

The use of cellular structures has led to unprecedented outcomes in various fields involving optical and mechanical cloaking, negative thermal expansion, and a negative Poisson’s ratio. The unique characteristics of periodic cellular structures primarily originate from the interconnectivity, periodicity, and unique design of the unit cells. However, the periodicity often induces unfavorable mechanical behaviors such as a “post-yielding collapse”, and the mechanical performance is often limited by the design of the unit cells. Therefore, we propose a novel structure called a meta grain structure (MGS), which is inspired by a polycrystalline structure, to enhance flexibility in design and mechanical reliability. A total of 138 different MGSs were built and tested numerically, and the correlations between the design parameters (e.g., the relative density) and mechanical properties of the MGSs were rigorously analyzed. A systematic design methodology was developed to obtain the optimal design of the MGS with the target Young’s modulus. This methodology makes it possible to build a unique structure that offers various design options and overcomes the current limitations of cellular structures. Furthermore, a systematic inverse design methodology makes it possible to produce an MGS that satisfies the required mechanical performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.