Abstract
As businesses navigate the digital landscape, the proliferation of electronic transactions has led to an abundance of valuable data that can be harnessed for strategic decision-making. This study explores the application of CRM and RFM analysis for customer profiling and segmentation, utilizing e-invoice data as a rich source of information. By leveraging these advanced statistical techniques, the research aims to uncover hidden patterns within electronic transaction records, allowing for the identification of distinct customer segments based on their purchasing behavior. The methodology involved collecting and pre-processing one year of e-invoice data from Fit IT Company, followed by applying statistical models to uncover underlying structures and relationships. Furthermore, the research examines the implications of customer segmentation on marketing strategies, customer relationship management, and personalized service offerings. CRM and RFM analyses were performed on the annual sales data obtained as a result of e-invoice usage service to customers. When the results of the analysis were analyzed, the number of transactions belonging to the sender, recipient, and parties in the top 10 every month were extracted. It has been demonstrated that customer segmentation can be conducted more comprehensively by using CRM and RFM analyses together. While CRM analysis focuses on transaction volume and customer relationships, RFM analysis provides a more detailed perspective on customer behavior by evaluating purchase frequency, recency, and monetary value. In the study, by analyzing e-invoice data through these two methods, the most valuable customer groups were identified, and how strategic marketing approaches can be developed for these groups was illustrated. The combined use of CRM and RFM analyses allows for more accurate customer segmentation based on both transaction volume and spending habits. This approach concludes that strategies can be developed to increase customer loyalty, optimize marketing strategies, and improve business performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.