Abstract

AbstractMotivated by a question of Hirzebruch on the possible topological types of cusp cross-sections of Hilbert modular varieties, we give a necessary and sufficient condition for a manifoldMto be diffeomorphic to a cusp cross-section of a Hilbert modular variety. Specialized to Hilbert modular surfaces, this proves that every Sol 3–manifold is diffeo morphic to a cusp cross-section of a (generalized) Hilbert modular surface. We also deduce an obstruction to geometric bounding in this setting. Consequently, there exist Sol 3–manifolds that cannot arise as a cusp cross-section of a 1–cusped nonsingular Hilbert modular surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.